

Flow Cytometry Core, KRCBS.

Flow Cytometry Training Information Form							
Date:							
Name:							
Lab:							
Background Flow Cytometry Experience (if yes, what instrument?):							
Research Aim/Question:							
Sample: (e.g. immortalized cells, primary cells, tissue digests, blood sample):							

Markers/Fluorophores/Dyes (e.g. CD45-FITC):

Viability dye:

Staining (extracellular, intracellular, both):

What samples/controls will you be bringing to the training?

Availability for training (please provide a few dates, with a 2hr window):

Analyzers available at the facility: BD Fortessa X-20, Beckman CytoFlex LX, Sony SP6800 (indicate if you have a preference):

Indicate if analysis software training is required (Flowjo)? (Y/N):

YES NO

Please note: All RG2 biohazardous agents run on analyzers should be fixed.

- RG2 agents: human primary cells or cell lines from human and animals containing RG2 agents (i.e. retroviral vectors, etc.)
- the standard fixative used is **1-2% paraformaldehyde** for at least 15-30 minutes on ice (agent dependent)

What buffer to use?

Basic flow buffer (non-adherent cell types)

- 1x PBS or HBSS (Calcium/Magnesium free)
- o **1-2% FBS**
- Filter sterilize using a 0.22 µM filter
- Store at 4 degrees

Flow buffer (adherent cells or tissue digests)

- 1x PBS or HBSS (Calcium/Magnesium free)
- o **1 % BSA**
- 1 mM EDTA (will keep more sticky cells from re-associating)
- Filter sterilize using a 0.22 μM filter
- Store at 4 degrees

What samples to bring?

- Unstained control
- Single stain controls
 - Will reveal the level of spectral overlap between different fluorophores and allow you to remove or compensate for this overlap.
 - Stain your fluorochrome-conjugated antibody on the experimental cell type or on antibody capture beads.
 - the single stained control must contain a **positive** and **negative** population AND the autofluorescence of the positive and negative populations must be equivalent (same particle types)
 - o If population is rare or requires induction (use compensation beads) i.e.:
 - O UltraComp eBeads[™] Plus Compensation Beads (ThermoFisher, Cat# 01-3333-42)
 - OneComp eBeads (ThermoFisher, Cat# 01-1111-41)
 - AbC[™] Total Antibody Compensation Bead Kit (ThemoFisher, Cat# A10513
 ***Always double check that the beads are compatible with your antibodies.

0

- Live/dead control (viability dye): allocate an aliquot of cells of interest, heat treat at 65 degrees for 4 min, immediately place on ice for 1 min. Following the treatment, the heat-killed cells can be combined 1:1 with live cells and then stained with your viability dye.
- ***FMOs** (Fluorescence minus one) controls for multicolor experiments = gating controls for your experiment.
 - Use same cell type as your sample, stained with all the fluorochromes minus one fluorochrome (see table below).

0

• **All stained**: minimum of two fluorchoromes + viability dye.

FMO Control Setup - Example:

			AF700		PE-Cy7
Marker	Fluorophore	APC FMO	FMO	PE FMO	FMO
CD45	APC	-	+	+	+
CD4	AF700	+	-	+	+
CD25	PE	+	+	-	+
CD8	PE-Cy7	+	+	+	-
	DAPI (viability)	+	+	+	+

Important: Clumps and debris can clog the instrument fluidics and either distort the measurements or obstruct them completely.

- Samples should be passed through a 35-50µm nylon mesh just prior to acquisition. i.e.:
 - Falcon® Round-Bottom Tubes with Cell Strainer Cap, 5 mL polystyrene, roundbottom tube with 35 μm nylon mesh cell strainer snap cap (Falcon, #352235)
 - pluriStrainer Mini 40 μm (just filter cap) (puriSelect, #43-10040-40)
- Note: Costs incurred due to misuse of instrument (clogging, damage) will be charged to the lab

Other items that you may need during the hands on training:

- ice container with lid (keep samples on ice and protect from light)
- P1000 pipette and tips
- Extra flow buffer (5-10 ml)
- Extra 5ml tubes and cell strainers

****Please bring your samples in **5ml Falcon polystyrene tubes only** (Falcon, #352008), other tubes will not form a proper vacuum seal on the sample injection port (relevant to: BD Fortessa X-20, Sony SP6800)

Please return the completed form to monika.lodyga@unityhealth.to